Job Truss	Truss Type	Qty	Ply	Sample Roof Layout	
PEAS0311-1 T10	Monopitch	9	1		
Peak Truss Builders, Holly Springs, NC			Run: 7.620 s /	Job Reference (optional) Apr 30 2015 Print: 7,620 s Apr 30 2015	MiTek Industries, Inc. Fri Mar 11 09:13:02 2016 Page 1
	100	I. T 4 0	ADPGGTe	QQxSZmmNZYQrpgdyaQar-sNY	JKONk?pZ0XwPzw8?X13pITl8np9DUlyET?rzc2kF
	1-0-0	7-4-0 7-4-0			
				2x4	Scale = 1:23.3
				3	
	ĪĪ				
		4.00 12			
		9			
	0-0-			W1	LUMBER-
	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T1			
					BOT CHORD
	2				2x4 SP No.1
		B1		<u>_</u>	WEBS
					2x4 SP No.3
	3x4 =			4	
				2X4	
		7-4-0			
Plate Offsets (X,Y) [2:0-1-10,Edge]		7-4-0			
					TE0 0010
TCLI 20.0 Plate Grip F	2-0-0 CSI. DOI 1.15 TC 0.44	Vert(LL) -0.06 4	0C) I/defi I-7 >999	240 PLA	20 244/190
TCDL 10.0 Lumber DO	L 1.15 BC 0.29	Vert(TL) -0.17	-7 >515	180	
BCLL 0.0 * Rep Stress	Incr YES WB 0.00	Horz(TL) 0.01	2 n/a	n/a	abt: 07 lb FT 000/
	009/TP12007 (Matrix-M)			vve	gni. 27 lb F1 = 20%
LUMBER-		BRACING-			
TOP CHORD 2x4 SP No.1		TOP CHORD Sti	uctural woo	od sheathing directly applied of the sheathing directly applied or 10-0-0 oc br	r 5-7-6 oc purlins, except end verticals.
WEBS 2x4 SP No.3			liTek recon	nmends that Stabilizers and re	quired cross bracing be installed during
		tr	uss erectio	n, in accordance with Stabilize	er Installation guide.
REACTIONS. (lb/size) 4=229/0-3-8 (min. 0-	-1-8), 2=406/0-3-8 (min. 0-1-8)				
Max Horz $2=88(LC 9)$ Max Uplift4=-12(LC 10), 2=-50 ^{\circ}	(LC 10)				
	×/				
FORCES. (Ib) - Max. Comp./Max. Ten All fc	prces 250 (lb) or less except when shown.				
BOT CHORD 2-4=-380/1293					

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 7-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 4 and 50 lb uplift at joint 2.

6) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

7) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2, 7, 8.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (it=lb) 4=103.
- 7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPT 1.
- 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

5) * I his truss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 BOT CHORD

DRD Structural wood sheathing directly applied or 4-2-5 oc purlins, except end vertical: DRD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (Ib/size) 3=144/4-2-0 (min. 0-1-8), 2=144/4-2-0 (min. 0-1-8) Max Horz 3=-93(LC 6) Max Uplift3=-28(LC 6), 2=-2(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone;

- cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout	
PEAS0311-1	V7	Valley	1	1	Job Reference (optional)	
Peak Truss Builders, Holly Springs	s, NC	1	F ID:ADF	un: 7.620 s A GGTeQQxS	Apr 30 2015 Print: 7.620 s Apr 30 2 SZmmNZYQrpgdyaQar-GyER	2015 MiTek Industries, Inc. Fri Mar 11 09:13:05 2016 Page 1 VQPcHkyaON8YbGZEfiRuByEm0WywRwT8cAzc2kC
		⊢ 1	<u>1-11-11</u> 1-11-11	4		
		2x4				Scale = 1:12.6
		2 2 4 4 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1	9.00 12 T LUMBER- TOP CHORD 2x4 & PN0.1 BOT CHORD 2x4 & PN0.1 WEBS XX4 SPN0.1 2x4 ⊗	0-Ö-4		
		l				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.02 BC 0.01 WB 0.00 (Matrix)	DEFL. in (lo Vert(LL) n/a Vert(TL) n/a Horz(TL) 0.00	rc) l/defl - n/a - n/a 2 n/a	L/d F 999 N 999 n/a	PLATES GRIP MT20 244/190 Weight: 7 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No. BOT CHORD 2x4 SP No. WEBS 2x4 SP No. REACTIONS. (lb/size) 3 Max Horz 3 Max Uoliffa	1 1 3 =56/1-11-5 (min. 0-1-8), 2=56/1-11- =-36(LC 6) =-11(LC 6), 2=-1(LC 10)	5 (min. 0-1-8)	BRACING- TOP CHORD Str BOT CHORD Rig M tr	uctural woo id ceiling c iTek recon uss erectio	od sheathing directly applie lirectly applied or 10-0-0 oc nmends that Stabilizers and n, in accordance with Stab	d or 1-11-11 oc purlins, except end verticals. bracing. d required cross bracing be installed during ilizer Installation guide.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone;

- cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	H1	Diagonal Hip Girder	2	1	
Peak Truss Builders, Holly Springs, NC		↓ <u>-1-5-0</u> <u>1-5-0</u>	<u>8-5-1</u> 8-5-1	Run: 7.620 s ID:ADPGGTeQ	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:06 2016 Page QQxSZmmNZYQrpgdyaQar-k8opAmQE224R0Xjk9_4TCv_yOMPqlyg3gaCh8dzc2k
				2x4 3 4	Scale = 1:46.
		91-1-0 51-6- 7 7 7x6 =	NAILED 7.07 12 NAILED 9 VAILED NAILED 8 10 10 11 NAILED	65	
		H	8-5-1 8-5-1		4
Plate Offsets (X,Y) [7:0-3-0,0]-6-4]		1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IBC2009/TPI2007	CSI. TC 0.51 BC 0.67 WB 0.10 (Matrix-M)	DEFL. in Vert(LL) -0.20 Vert(TL) -0.50 Horz(TL) -0.00	(loc) l/defl 6-7 >486 6-7 >191 6 n/a	fl L/d PLATES GRIP 6 240 MT20 244/190 1 180 Weight: 49 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP DSS BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 REACTIONS. (lb/size) 7=360 Max Horz 7=190 Max Uplift7=-11	0/0-4-9 (min. 0-1-8), 6=322/Mec 8(LC 5) 12(LC 8), 6=-132(LC 5)	hanical	BRACING- TOP CHORD BOT CHORD	Structural wo Rigid ceiling (MiTek recor truss erectio	rood sheathing directly applied or 6-0-0 oc purlins, except end verticals. g directly applied or 10-0-0 oc bracing. ommends that Stabilizers and required cross bracing be installed during tion, in accordance with Stabilizer Installation guide.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-289/139

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 7=112, 6=132.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails. For more details refer to MiTek's ST-TOENAIL Detail.

10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-20, 5-7=-20

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	H1	Diagonal Hip Girder	2	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC				Run: 7.620 s	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:06 2016 Page 2
			ID:A	DPGGTeQ	QxSZmmNZYQrpgdyaQar-k8opAmQE224R0Xjk9_4TCv_yOMPqlyg3gaCh8dzc2kB

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 8=95(F=47, B=47) 9=-30(F=-15, B=-15) 10=28(F=14, B=14) 11=-30(F=-15, B=-15)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) -1-0-0 to 2-0-0 , Interior(1) 2-0-0 to 4-11-8, Exterior(2) 4-11-8 to 7-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.

4) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

5) All plates are 2x4 MT20 unless otherwise indicated.

- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11.
- 12) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

a) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T1GRD	Common Girder	1	2	Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F ID:A	un: 7.620 s /	pr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:08 2016 Page 2 QxSZmmNZYQrpgdyaQar-gXvaaRSVafK9Frs7GP6xHK3MIA0PDiMM7thoDVzc2k9

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 11) Use USP HUS26 (With 16d nails into Girder & 16d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 8-0-12 to connect truss(es) T3 (1 ply 2x4 SP) to front face of bottom chord.

12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 5-8=-20 Concentrated Loads (lb) Vert: 11=-1177(F) 12=-1177(F) 13=-1177(F) 14=-1177(F)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T11	Attic	7	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F	Run: 7.620 s	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:09 2016 Page 1

ID:ADPGGTeQQxSZmmNZYQrpqdyaQar-9jTyonS7LzS0t?RJq6eApYcLAZRzyBAWMXRLlxzč2k8 11-11-8 14-3-4 1-0-0 6-9-12 9-7-12 11-3-8 12-7₁8 17-1-4 23-11-0 24-11-0 1-0-0 1-7-12 0-8-0 6-9-12 2-10-0 2-10-0 6-9-12 0-8-0 1-7-12 6x12 || 9.00 12 3x6 = 3x6 = 7x8 🗸 7x8 📎 W3 8 9 28 3x6 || 3x6 || 10 5x5 ⁄ 29 ^{5x5} × 11 23 സ 12 13 B1 r fin B2 30 15 31 14 16 5x12 || 3x6 || 6x8 = 5x12 ||

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc bracing.

truss erection, in accordance with Stabilizer Installation guide.

MiTek recommends that Stabilizers and required cross bracing be installed during

LUMBEF TOP CH 2x8 SP 1 BOT CH 2x10 SP WEBS 2x4 SP N SLIDER Left 2x6

Scale = 1.88 7

		6-9-12 6-9-12	<u>17-1-4</u> 10-3-8 <u>23-11-0</u> 6-9-12	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.98	Vert(LL) -0.23 14-16 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.70	Vert(TL) -0.39 14-16 >737 180	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.56	Horz(TĹ) 0.04 2 n/a n/a	
BCDL 10.0	Code IBC2009/TPI2007	(Matrix-M)	Attic -0.10 14-16 1298 360	Weight: 225 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x8 SP No.2 BOT CHORD 2x10 SP No.2 WEBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 2-0-0, Right 2x6 SP No.2 2-0-0

REACTIONS. (lb/size) 2=1068/0-3-8 (min. 0-1-9), 12=1068/0-3-8 (min. 0-1-9) Max Horz 2=196(LC 9) Max Uplift2=-53(LC 10), 12=-53(LC 10) Max Grav 2=1328(LC 2), 12=1328(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-26=-1502/45, 4-26=-1350/75, 4-27=-994/132, 5-27=-859/168, 5-6=-845/172, 6-7=-147/944, 7-8=-147/944,

8-9=-845/172, 9-28=-859/168, 10-28=-994/132, 10-29=-1350/75, 11-29=-1502/45

BOT CHORD 2-30=0/1006, 16-30=0/1006, 15-16=0/1009, 14-15=0/1009, 14-31=0/1006, 12-31=0/1006

WEBS 10-14=0/710, 4-16=0/710, 6-17=-2419/425, 8-17=-2419/425, 7-17=-90/572

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) -1-0-0 to 2-0-0 , Interior(1) 2-0-0 to 11-11-8, Exterior(2) 11-11-8 to 14-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

PDF created with pdfFactory Pro trial version www.pdffactory.com

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Ceiling dead load (5.0 psf) on member(s). 4-6, 8-10, 6-17, 8-17

7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 14-16

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T12	Attic	3	1	lah Defense en (anti-nah)
Peak Truss Builders, Holly Springs, NC			 F	Run: 7.620 s 7	JOD Reference (optional) Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:10 2016 Page 1

LUMBEF TOP CH 2x8 SP 1 BOT CH 2x10 SP WEBS 2x4 SP N SLIDER

Left 2x6

Scale = 1.88 7

		6-9-12 6-9-12	17-1-4 3x6 23-11-0 10-3-8 6-9-12	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.98 BC 0.70 WB 0.56 (Matrix-M)	DEFL. in (loc) l/defl L/d Vert(LL) -0.23 12-14 >999 240 Vert(TL) -0.39 12-14 >739 180 Horz(TL) 0.04 1 n/a n/a Attic -0.10 12-14 1296 360	PLATES GRIP MT20 244/190 Weight: 221 lb FT = 20%

LUMBER-

TOP CHORD 2x8 SP No.2 BOT CHORD 2x10 SP No.2

WEBS 2x4 SP No.3

SLIDER Left 2x6 SP No.2 2-0-0, Right 2x6 SP No.2 2-0-0

REACTIONS. (lb/size) 1=1007/0-3-8 (min. 0-1-8), 10=1070/0-3-8 (min. 0-1-9) Max Horz 1=-192(LC 8) Max Uplift1=-22(LC 10), 10=-53(LC 10) Max Grav 1=1270(LC 2), 10=1322(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-24=-1498/53, 3-24=-1346/76, 3-25=-992/133, 4-25=-857/173, 4-5=-147/941, 5-6=-150/941, 6-7=-843/171,

7-26=-858/167, 8-26=-992/131, 8-27=-1347/75, 9-27=-1499/45

BOT CHORD 1-28=0/1003, 14-28=0/1003, 13-14=0/1006, 12-13=0/1006, 12-29=0/1003, 10-29=0/1003

WEBS 8-12=0/705, 3-14=0/704, 4-15=-2413/431, 6-15=-2413/431, 5-15=-91/571

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 11-11-8. Exterior(2) 11-11-8 to 14-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Ceiling dead load (5.0 psf) on member(s). 3-4, 6-8, 4-15, 6-15

- 7) Bottom chord live load (40.0 psf) and additional bottom chord dead load (0.0 psf) applied only to room. 12-14
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10.
- 9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) ATTIC SPACE SHOWN IS DESIGNED AS UNINHABITABLE.

BRACING-

TOP CHORD Structural wood sheathing directly applied.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3OTHERS2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD

RD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 RD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (Ib/size) 1=15/6-3-5 (min. 0-1-8), 4=125/6-3-5 (min. 0-1-8), 5=317/6-3-5 (min. 0-1-8) Max Horz 1=148(LC 7) Max Uplift1=-38(LC 8), 4=-35(LC 7), 5=-81(LC 10) Max Grav 1=86(LC 7), 4=125(LC 1), 5=317(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-6=-276/83, 2-6=-265/86

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 6-1-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-5-4 to 3-5-4, Interior(1) 3-5-4 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 2x4 SP No.3 WEBS

BRACING-

TOP CHORD

Structural wood sheathing directly applied or 1-10-5 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 1=51/1-10-0 (min. 0-1-8), 3=51/1-10-0 (min. 0-1-8) Max Horz 1=33(LC 7) Max Uplift1=-1(LC 10), 3=-10(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone;

cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

LOAD CASE(S) Standard

PDF created with pdfFactory Pro trial version www.pdffactory.com

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

BRACING-

TOP CHORD

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-7-4 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=157/3-4-2 (min. 0-1-8), 4=157/3-4-2 (min. 0-1-8) Max Horz 2=-36(LC 8) Max Uplift2=-19(LC 10), 4=-19(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1

BRACING-

TOP CHORD

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

Structural wood sheathing directly applied or 4-7-4 oc purlins.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 2=157/3-4-2 (min. 0-1-8), 4=157/3-4-2 (min. 0-1-8) Max Horz 2=-36(LC 8) Max Uplift2=-19(LC 10), 4=-19(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 5, 8, 7.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply Sample Roof Layo	but			
PEAS0311-1	T1	Piggyback Base	5	1 Job Reference	(optional)			
Peak Truss Builders, Holly Springs, NC			I	Run: 7.620 s Apr 30 2015 Print: 7	7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:15 2 rogdyaQar-ztgD2rXuxpCAbwyTANka3psWY_YpM2VOk	016 Page 1 Tufzbzc2k2		
		6-5-11 12-7-14 6-5-11 6-2-3	17-3-2 23 4-7-4 6	-2-3 <u>6-5-11</u>	11-0 -0			
			0 - 475 -		Sc	ale = 1.91.6		
		42.00 42.00	0 — 4x5 —					
	0. <u>9-</u> 15 4	5×23 29 3×10 29 14 30 $3x_{10}$ $3x_{10}$ $2x_{4}$ 11 $2x_{4}$ 11 $2x_{4}$ 11 11 11 11 $2x_{4}$ 11	13 12 11 3x4 = 3x4 =	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 4-8 11 4-8 11 4-8 1 4-8	LUMBEF TOP CH 2x4 SP N BOT CH 2x4 SP N WEBS 2x4 SP N SLIDER Left 2x6		
			3x8 =					
		<u>6-5-11</u> <u>12-7-14</u> <u>6-5-11</u> <u>6-2-3</u>	<u> </u>	3-5-5 29-11-0 -2-3 6-5-11				
Plate Offsets (X,Y) [1:0-5-6,E	dge], [3:0-2-4,0-3-4], [4:0-6-4,0	2-0], [5:0-3-4,0-2-0], [6:0-2-4,0-3-4],	[8:0-5-6,Edge]		1			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.42 BC 0.42 WB 0.19 (Matrix-M)	DEFL. ir Vert(LL) -0.06 Vert(TL) -0.17 Horz(TL) 0.06	(loc) I/defl L/d 13-14 >999 240 13-14 >999 180 8 n/a n/a	PLATES GRIP MT20 244/190 Weight: 203 lb FT = 20%			
LUMBER-			BRACING-					
TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No.	2 2-0-0, Right 2x6 SP No.2 2-0-		TOP CHORD BOT CHORD WEBS	Structural wood sheathing di 2-0-0 oc purlins (6-0-0 max.) Rigid ceiling directly applied 1 Row at midpt 3-' MiTek recommends that St trues crection in accordance	rectly applied or 4-4-10 oc purlins, except : 4-5. or 10-0-0 oc bracing. 13, 4-11, 6-11 abilizers and required cross bracing be installed du	iring		
REACTIONS. (Ib/size) 1=119 Max Horz 1=-24 Max Uplift1=-66 Max Grav 1=123	96/0-3-8 (min. 0-1-8), 8=1258/0 2(LC 8) (LC 10), 8=-98(LC 10) 30(LC 2), 8=1278(LC 2)	3-8 (min. 0-1-8)			ee with Stabilizer installation guide.			
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-741/0, 2-23=-1547/190, 3-23=-1395/217, 3-24=-1185/242, 4-24=-1082/284, 4-25=-829/274, 25-26=-829/274, 5-26=-829/276 WEBS 3-14=0/268, 3-13=-409/171, 4-13=-54/454, 5-11=-62/433, 6-11=-404/170, 6-10=0/267								
NOTES- 1) Unbalanced roof live loads h 2) Wind: ASCE 7-05; 100mph; Interior(1) 3-0-0 to 12-7-14, I members and forces & MWF 3) This truss has been designed 4) Provide adequate drainage t 5) This truss has been designed 6) * This truss has been designed 1) * This truss has been designed	ave been considered for this de TCDL=6.0psf; BCDL=6.0psf; h= Exterior(2) 12-7-14 to 21-6-1, Int RS for reactions shown; Lumbe d for basic load combinations, v o prevent water ponding. d for a 10.0 psf bottom chord liv ed for a live load of 20.0psf on = 10.0psf.	sign. 25ft; B=45ft; L=30ft; eave=4ft; Cat. rrior(1) 21-6-1 to 30-11-0 zone; can r DOL=1.60 plate grip DOL=1.60 hich include cases with reductions e load nonconcurrent with any other ne bottom chord in all areas where a	II; Exp B; enclosed; MWF tilever left and right expos for multiple concurrent liv r live loads. a rectangle 3-6-0 tall by 2	RS (all heights) and C-C Extend and ; end vertical left and right e loads. -0-0 wide will fit between the b	erior(2) 0-0-0 to 3-0-0, exposed;C-C for pottom chord and any			

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Configuration of the section of

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T1	Piggyback Base	5	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F	Run: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:15 2016 Page 2
			ID:/	ADPGGTeQ	QxSZmmNZYQrpgdyaQar-ztqD2rXuxpCAbwvTANka3psWY_YpM?VOkTufzbzc2k2

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Con Remer side parts by preaks including heels" Member end fixity model was used in the analysis and design of this truss.

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T14	Нір	1	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F	lun: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:16 2016 Page 2
			ID:AD	PGGTeQQ	xSZmmNZYQrpgdyaQar-R4ObGBYWi7K0C4Ufk4Gpb0PddOtg5QbYz7dDV2zc2k1

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T15	Нір	1	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC	;		F	Run: 7.620 s	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:16 2016 Page 2
			ID:AD	PGGTeQQ	

PDF Created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type		Qty	Ply	Sample Roof Layout	
PEAS0311-1	T17	Jack-Open		10	1	Job Reference (optional)	
Peak Truss Builders, Holly S	prings, NC			ID:AD	Run: 7.620 s PGGTeQQ	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:18 201 SZmmNZYQrppdvaQar-OSWMhsZmDkakSNd2sVIIhRU?vCcXZQArQR6K	6 Page 1 Zwzc2k?
			+-1-0-0 + 6-0-0 1-0-0 6-0-0		+		
				3	3	Scale	e = 1:43.0
		ĪĪ			1		
			10.00 12				
			10.00 12				
		6 15			2-15	2	
		2-5	6 ⁷ ^{†1}		5-9-		LUMBER- TOP CHOI
							2x4 SP No
		μ. L	² W1				2x4 SP No
		0-9-1	1 <u>B1</u>				WEBS 2x4 SP No
				2			2,4 01 10

			6-0-0 6-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.54 BC 0.29 WB 0.00 (Matrix-M)	DEFL. in (loc) I/defl L/d Vert(LL) 0.06 4-5 >999 240 Vert(TL) -0.14 4-5 >510 180 Horz(TL) 0.05 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 23 lb FT = 20%

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1WEBS2x4 SP No.3

BRACING-

TOP CHORD BOT CHORD

RD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
 RD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 5=307/0-3-8 (min. 0-1-8), 3=155/Mechanical, 4=70/Mechanical Max Horz 5=192(LC 10) Max Uplift3=-94(LC 10) Max Grav 5=307(LC 1), 3=155(LC 1), 4=111(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-262/76

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) -1-0-0 to 2-0-0, Interior(1) 2-0-0 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x7 ||

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any

other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any

other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

Job	Truss	Truss Type	Qty	Ply Sample Roof Layou	t		
PEAS0311-1	T2	Piggyback Base	1				
Peak Truss Builders, Holly Springs,	NC	<u>6-5-11</u> <u>12-7-14</u> <u>6-5-11</u> <u>6-2-3</u>	<u> </u>	Job Reference (o Run: 7.620 s Apr 30 2015 Print: 7.6 ID:ADPGGTeQQxSZmmNZYQrp 5-5 29-11-0 -3 6-5-11	iptional) 620 s Apr 30 2015 MiTek Industrie pgdyaQar-Kre66Yb0lLrShhnG	s, Inc. Fri Mar 11 09:13:20 2016 Page 1 JzwKmmsZNY?FB1Gk7ulbQdpzc2jz	
		4xi	8 = 4x5 =			Scale = 1:91.6	
	Ţ	10.00 12			T		
	8.4.1 8.4.1 4x1	$5x6 \neq 23$ 3 3 3 3 22 1^{2} 4 28 13 29 $2x4 \parallel$ 4 4 $5x6 \neq 23$ 23 29 $2x4 \parallel$ 4 4 4 4 4 4 4 4 4 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-915		LUMBEF TOP CH 2x4 SP N BOT CH 2x4 SP N WEBS 2x4 SP N SLIDER Left 2x6
Plate Offsets (X,Y) [1:0-5-	6,Edge], [3:0-2-4,0-3-4], [4:0-6-4,0-2	-0], [5:0-3-4,0-2-0], [6:0-2-4,0-3-4]	, [8:0-5-6,Edge]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.33 BC 0.40 WB 0.19 (Matrix-M)	DEFL.inVert(LL)-0.06Vert(TL)-0.17Horz(TL)0.06	(loc) l/defl L/d 12-13 >999 240 12-13 >999 180 8 n/a n/a	PLATES C MT20 2 Weight: 201 lb	GRIP 244/190 FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP N	No.2 2-0-0, Right 2x6 SP No.2 2-0-0		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): - Rigid ceiling directly applied o 1 Row at midpt 3-12	ectly applied or 4-7-7 oc pu 4-5. r 10-0-0 oc bracing. 2, 4-10, 6-10	rlins, except	
REACTIONS. (Ib/size) 1= Max Horz 1= Max Uplift1= Max Grav 1=	1197/0-3-8 (min. 0-1-8), 8=1197/0-3 -230(LC 8) -66(LC 10), 8=-66(LC 10) 1231(LC 2), 8=1227(LC 2)	I-8 (min. 0-1-8)		truss erection, in accordance	e with Stabilizer Installation	guide.	
FORCES. (lb) - Max. Comp TOP CHORD 1-2=-742/0, 5-25=-830/2 BOT CHORD 1-28=-138/1 10-31=-59/1 WEBS 3-13=0/268,	o./Max. Ten All forces 250 (lb) or le 2-22=-1548/190, 3-22=-1396/218, 3 274, 5-26=-1077/285, 6-26=-1180/24 1122, 13-28=-64/1122, 13-29=-65/1 1112, 9-31=-59/1112, 9-32=-57/1117 , 3-12=-409/171, 4-12=-55/454, 5-10	ss except when shown. -23=-1186/243, 4-23=-1083/285, 4 3, 6-27=-1390/218, 7-27=-1541/19 17, 12-29=-65/1117, 12-30=0/835 7, 8-32=-144/1117 =-66/435, 6-10=-408/171, 6-9=0/2	4-24=-830/274, 24-25=-83 90, 7-8=-739/0 , 11-30=0/835, 10-11=0/83 268	0/274, 5,			
NOTES- 1) Unbalanced roof live load 2) Wind: ASCE 7-05; 100mp Interior(1) 3-0-0 to 12-7-14	ls have been considered for this des oh; TCDL=6.0psf; BCDL=6.0psf; h=2 4, Exterior(2) 12-7-14 to 21-6-1, Inte	ign. :5ft; B=45ft; L=30ft; eave=4ft; Cat. rior(1) 21-6-1 to 29-11-0 zone; can	II; Exp B; enclosed; MWF tilever left and right expos	RS (all heights) and C-C Exteri	ior(2) 0-0-0 to 3-0-0, exposed;C-C for		

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T2	Piggyback Base	1	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F	lun: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:20 2016 Page 2
			ID	ADPGGTe0	QQxSZmmNZYQrpgdyaQar-Kre66Yb0lLrShhnQzwKmmsZNY?FB1Gk7ulbQdpzc2jz

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any

other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

7) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

8) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	T2GRD	Hip Girder	1	2	Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F ID	Run: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:22 2016 Page 2 QQxSZmmNZYQrpodvaQar-GDIsWEcHHz5Ax?xp5LMErHeaFpxiV2EQL34Xihzc2ix

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=519, 7=519.
- 10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use USP HJC28 (With 16d nails into Girder & 10d nails into Truss) or equivalent spaced at 17-10-4 oc max. starting at 6-0-6 from the left end to 23-10-10 to connect truss(es) T17 (1 ply 2x4 SP), H1 (1 ply 2x4 SP), T17 (1 ply 2x4 SP), H1 (1 ply 2x4 SP), to back face of bottom chord.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails. For more details refer to MiTek's ST-TOENAIL Detail.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-3=-60, 3-6=-60, 6-8=-60, 13-16=-20

Concentrated Loads (lb)

Vert: 3=-95(B) 10=-50(B) 12=-344(B) 9=-344(B) 6=-95(B) 19=-95(B) 20=-95(B) 22=-95(B) 23=-95(B) 24=-95(B) 25=-95(B) 27=-95(B) 28=-95(B) 29=-50(B) 30=-50(B) 31=-50(B) 33=-50(B) 35=-50(B) 36=-50(B) 37=-50(B) 3

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layou	t		
PEAS0311-1	ТЗ	Piggyback Base	4	1	lob Reference (c	untional)		
Peak Truss Builders, Holly Springs, NC				Run: 7.620 s	Apr 30 2015 Print: 7.0	ptional) 520 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:1: dvaQar-kQ.IEkadv2GD1Y8W/2e2uTQ//Bm3DBIE	3:23 2016 Page 1 ZVaaig5E8zc2iw	
	F	6-5-11 12-7-14 6-5-11 6-2-3	<u> </u>	-5-5 2-3	29-11-0 6-5-11			
		4x8	= 6x6 =				Scale = 1:87.7	
		10.00 12	⁴ 23 5 24					
	87-FF 4x5 / 57-6- 6-0 3x1 -	$5x8 \neq 22$ 3 $2 + 10^{-1}$ 3 $2 + 10^{-1}$ 3 4 $2 + 10^{-1}$ 3 4 27 28 12 $5x5 =$ $5x5 =$ $9.7.8$ $12.7.1$ $3.0.6$	$ \begin{array}{c} $	2^{25} 3x4 6 7 W6 3^{2} 3x4 6^{7} 7 W6	2x4 = $26 4x5$ 8 $4x5$ 8 $4x5$ 8 $4x5$ 8 $4x5$ 8 8 8 8 8 10 10 -8	6 0- <u>9-15</u> 0- <u>9-15</u> 11-4-8	LUMBER- TOP CHO 2x4 SP Nc BOT CHO 2x4 SP Nc WEBS 2x4 SP Nc SLIDER Left 2x6 S	IRD J.1 IRD J.1 J.3 IP No
Plate Offsets (X,Y) [1:0-5-6,E	dge], [3:0-4-0,0-3-0], [4:0-6-4,0-	2-0], [5:0-4-4,0-2-0], [9:0-3-13,0-1-	3]			1		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.89 BC 0.80 WB 0.44 (Matrix-M)	DEFL. ir Vert(LL) -0.2' Vert(TL) -0.5(Horz(TL) 0.28	n (loc) l/defl l 12-15 >999) 12-15 >712 3 9 n/a	L/d 240 180 n/a	PLATES GRIP MT20 244/190 Weight: 179 lb FT = 20%		
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No. REACTIONS. (lb/size) 1=11 Max Horz 1=23 Max Uplift1=-66	2 2-0-0, Right 2x6 SP No.2 2-6-(97/0-3-8 (min. 0-1-8), 9=1197/M 0(LC 9) /(LC 10). 9=-66(LC 10)) echanical	BRACING- TOP CHORD BOT CHORD	Structural wo 2-0-0 oc purli Rigid ceiling MiTek recon truss erection	ood sheathing dire ins (5-5-11 max.) directly applied o mmends that Sta on, in accordance	ectly applied, except : 4-5. r 10-0-0 oc bracing. bilizers and required cross bracing be installe e with Stabilizer Installation guide.	∍d during	
FORCES. (lb) - Max. Comp./ TOP CHORD 1-2=-1017/0, 2 5-24=-1265/25 BOT CHORD 1-27=-172/104 WEBS 3-12=-309/88,	lax. Ten All forces 250 (lb) or l 2-21=-1448/209, 3-21=-1266/236 8, 5-25=-2105/259, 6-25=-2198, 5, 27-28=-76/1045, 12-28=-76/1 4-10=0/555, 5-10=-43/1069, 7-1	ess except when shown. , 3-22=-1313/229, 4-22=-1183/271 227, 6-7=-2223/210, 7-26=-2470/3 045, 11-12=-46/997, 10-11=0/100 0=-269/225	, 4-23=-1265/258, 23-24= 14, 8-26=-2524/278, 8-9= 7, 9-10=-176/2016	-1265/258, -1222/0				
NOTES- 1) Unbalanced roof live loads f 2) Wind: ASCE 7-05; 100mph; Interior(1) 3-0-0 to 12-7-14, members and forces & MWI 3) This truss has been designe 4) Provide adequate drainage i 5) This truss has been designe 6) * This truss has been designed other members, with BCDL	have been considered for this de TCDL=6.0psf; BCDL=6.0psf; h= Exterior(2) 12-7-14 to 21-6-1, Int FRS for reactions shown; Lumbe d for basic load combinations, w to prevent water ponding. d for a 10.0 psf bottom chord liv ted for a live load of 20.0psf on t = 10.0psf.	sign. 25ft; B=45ft; L=30ft; eave=4ft; Cat erior(1) 21-6-1 to 29-11-0 zone; car r DOL=1.60 plate grip DOL=1.60 hich include cases with reductions e load nonconcurrent with any othe he bottom chord in all areas where	II; Exp B; enclosed; MWI tillever left and right expo for multiple concurrent liv r live loads. a rectangle 3-6-0 tall by 2	FRS (all height: sed ; end vertic e loads. 2-0-0 wide will f	s) and C-C Exteri al left and right e it between the bo	or(2) 0-0-0 to 3-0-0, xposed;C-C for attom chord and any		

7) Refer to girder(s) for truss to truss connections.
8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.
9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

PDP created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout		
PEAS0311-1	T4	Piggyback Base	5	1			
Peak Truss Builders, Holly Springs, N	٧C			Run: 7.620 s A	Job Reference (op Apr 30 2015 Print: 7.6	otional) 20 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:24 2016	Page 1
		6-5-11 , 12-7-14 ,	17-3-2 23	ID:ADPGGTe	QQxSZmmNZYQr 29-11-0 30-1	pgdyaQar-CctdxweXpaLuAl5CCmPiwikwMcXqz0njpNZem 1 ^{,0}	azč2jv
		6-5-11 6-2-3	4-7-4 6	-2-3	6-5-11 1 -0-	-0	
		4x8 =	6x6 =			Scale =	1:86.4
	0.9.15 0.9.15 0.9.15 0.9.15	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 25 W2 W5 11 5xi	$\frac{12}{6}$ $\frac{26}{7}$ $\frac{3x4}{6}$ $\frac{6}{7}$ $\frac{7}{8}$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{8}$	2x4 = 2x4 = 4x5 4x5 14 8 10 10 10 10 10 10 10 10 10 10	0.915 	LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP N
		5x5 =	5.00 12		6x8		
	3x10	9.7.8 12.7.14	10-7-8	20-11	-0		
Plato Offects (X V) [1:0-5-6	H	9-7-8 3-0-6	6-11-10	10-3-	-8		
	,_ugej, [3.0-4-0,0-3-0], [4.0-0-4,0-	2-0], [3.0-4-4,0-2-0], [3.0-4-1,Luge]					
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOI 1 15	CSI. TC 0.92	DEFL. in Vert(LL) -0.2	n (loc) l/defl	L/d 240	PLATES GRIP MT20 244/190	
TCDL 10.0	Lumber DOL 1.15	BC 0.81	Vert(TL) -0.50) 13-16 >712	180	W120 2++/100	
BCLL 0.0 * BCDI 10.0	Rep Stress Incr YES Code IBC2009/TPI2007	WB 0.44 (Matrix-M)	Horz(TL) 0.28	3 9 n/a	n/a	Weight: 181 lb $FT = 20\%$	
	0000 12 02 000, 11 12 001	(individi)					
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural woo 2-0-0 oc purlir Rigid ceiling c	od sheathing dire ns (5-5-11 max.): lirectly applied or	ctly applied, except 4-5. 10-0-0 oc bracing.	
SLIDER Left 2x6 SP N	o.2 2-0-0, Right 2x6 SP No.2 2-6-0)		MiTek recon	nmends that Stab	pilizers and required cross bracing be installed during	
REACTIONS. (lb/size) 1=1 Max Horz 1=-; Max Uplift1=-	196/0-3-8 (min. 0-1-8), 9=1258/0- 242(LC 8) 66(LC 10), 9=-98(LC 10)	3-8 (min. 0-1-8)		truss erectio	n, in accordance	with Stabilizer Installation guide.	
FORCES. (lb) - Max. Comp. TOP CHORD 1-2=-1017/0	/Max. Ten All forces 250 (lb) or l , 2-22=-1446/208, 3-22=-1264/236	ess except when shown. 5, 3-23=-1311/225, 4-23=-1181/267, 4-24= 404, 6 – 2216(478, 7, 27, 2500/266, 8, 2	-1262/245, 24-25=	-1262/245,			
BOT CHORD 1-28=-153/10 WEBS 3-13=-308/7	243, 0-20=-2099/227, 0-20=-2192 043, 28-29=-37/1043, 13-29=-37/1 1, 4-11=0/553, 5-11=-6/1064, 7-11	043, 12-13=-13/996, 11-12=0/1005, 9-11= =-265/226	=-2315/249, 8-9= =-142/2007	-1210/0			
NOTES-	s have been considered for this do	sian					

 Unbalanced root live loads have been considered for this design.
 Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-7-14, Exterior(2) 12-7-14 to 21-6-1, Interior(1) 21-6-1 to 30-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9.

9) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

PDP created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty Ply Sample Roof Layout	
PEAS0311-1	Т5	Piggyback Base		
Peak Truss Builders, Holly Springs, N	c		JOD Reference (optional) Run: 7.620 s Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 1 D: ADPCCTEQOCSTMMNIZ/Orgady202r.boP20Cfdau TicScOmTwoTwCH	1 09:13:25 2016 Page 1 502OiXvc11 IBI0zc2iu
		6-5-11 12-7-14 6-5-11 6-2-3	17-3-2 23-5-5 29-11-0 30-11-0 4-7-4 6-2-3 6-5-11 1-0-0	JU: OIAVST IJDIOZOZJU
		43	3 = 4x5 =	Scale = 1:91.6
	0. <u>9-</u> 15 ***	$10.00 \overline{12}$ $5x6 \not\sim 24$ 3 4 23 23 23 3 29 14 30 $3x7 $ $2x4 $	$\begin{array}{c} 425 \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	LUMBEF TOP CH 2x4 SP ↑ BOT CH 2x4 SP ↑ WEBS 2x4 SP ↑ SLIDER Left 2x6
		6-5-11 12-7-14 6-5-11 6-2-3	3x8 = 23555 + 29-11-0 + 4.74 + 6.23 + 6.511 + 6.511	
Plate Offsets (X,Y) [1:0-3-14	4,0-1-3], [3:0-2-4,0-3-0], [4:0-6-4,0-	2-0], [5:0-3-4,0-2-0], [6:0-2-4,0-3-4], [8:0-3-14,0-1-3]	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.15 BC 0.21 WB 0.13 (Matrix-M)	DEFL. in (loc) l/defl L/d Vert(LL) -0.03 13-14 >999 240 MT20 244/190 Vert(TL) -0.09 13-14 >999 180 MT20 244/190 Horz(TL) 0.03 8 n/a n/a Weight: 406 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 SLIDER Left 2x6 SP No	0.2 2-0-0, Right 2x6 SP No.2 2-0-0		BRACING- TOP CHORDStructural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-5.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.	
REACTIONS. (Ib/size) 1=1 Max Horz 1=-2 Max Uplift1=-6 Max Grav 1=12	196/0-3-8 (min. 0-1-8), 8=1258/0-3 42(LC 8) 6(LC 10), 8=-98(LC 10) 230(LC 2), 8=1278(LC 2)	-8 (min. 0-1-8)		
FORCES. (lb) - Max. Comp./ TOP CHORD 1-2=-788/0, 2 5-26=-829/27 BOT CHORD 1-29=-87/112 11-32=-37/11 WEBS 3-14=0/268, 3	Max. Ten All forces 250 (lb) or le -23=-1546/189, 3-23=-1394/217, 3 4, 5-27=-1076/281, 6-27=-1179/23 1, 14-29=-27/1121, 14-30=-28/111 08, 10-32=-37/1108, 10-33=-36/11 3-13=-409/171, 4-13=-54/454, 5-11	ss except when shown. -24=-1185/243, 4-24=-1082/285, 9, 6-28=-1513/210, 7-28=-1536/1 6, 13-30=-28/1116, 13-31=0/834, 13, 8-33=-79/1113 =-63/433, 6-11=-404/170, 6-10=0	1-25=-829/274, 25-26=-829/274, '5, 7-8=-774/0 12-31=0/834, 11-12=0/834, 267	
 NOTES- 1) 2-ply truss to be connected Top chords connected as f Bottom chords connected as Webs connected as follows 2) All loads are considered ec distribute only loads noted 3) Unbalanced roof live loads 4) Wind: ASCE 7-05; 100mph Interior(1) 3-0-0 to 12-7-14, members and forces & MW 5) This truss has been design 6) Provide adequate drainage 7) This truss has been design 	together with 10d (0.131"x3") nails ollows: 2x4 - 1 row at 0-9-0 oc. as follows: 2x4 - 1 row at 0-9-0 oc. s: 2x4 - 1 row at 0-9-0 oc. ually applied to all plies, except if r as (F) or (B), unless otherwise indi have been considered for this des ; TCDL=6.0psf; BCDL=6.0psf; h=2 Exterior(2) 12-7-14 to 21-6-1, Inte (FRS for reactions shown; Lumber ed for basic load combinations, wh to prevent water ponding. ed for a 10.0 psf bottom chord live	as follows: noted as front (F) or back (B) face cated. gn. 5ft; B=45ft; L=30ft; eave=4ft; Cat ior(1) 21-6-1 to 30-11-0 zone; cat DOL=1.60 plate grip DOL=1.60 ich include cases with reductions load nonconcurrent with any othe	n the LOAD CASE(S) section. Ply to ply connections have been provided to II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-0-0 to 3-0-0, tilever left and right exposed ; end vertical left and right exposed;C-C for for multiple concurrent live loads. live loads.	

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	Т5	Piggyback Base	2	2	Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F ID	Run: 7.620 s A	pr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:25 2016 Page 2 QQxSZmmNZYQrpgdyaQar-hoR?9Gf9auTloSgOmTwxTwGH50?OiXvs11JBl0zc2ju

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 8.
10) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	Т6	Piggyback Base	4	1	Job Reference (optional)
Peak Truss Builders, Holly Springs, NC	>		F	Run: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:26 2016 Page 1

ID:ADPGGTeQQxSZmmNZYQrpgdyaQar-9??NMbgnLBbcPcFaKBRA?7pO5QF9RtQ0Gh2lrSzc2jt

Scale = 1:94.5

Plate Offsets (X,Y) [1:	⊢	8-9-5 8-9-5 [6:0-4-0,0-1-4], [9:0-2-0,0-3-0],	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI. TC 0.39 BC 0.62 WB 0.56 (Matrix-M)	DEFL. in (loc) l/defl L/d Vert(LL) -0.16 19-21 >999 240 MT20 244/190 Vert(TL) -0.33 19-21 >999 180 MT20 244/190 Horz(TL) 0.11 11 n/a N/a Weight: 232 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N B3,B5: 2x WEBS 2x4 SP N SLIDER Left 2x6 S	lo.1 lo.1 *Except* ‹4 SP No.3 lo.3 SP No.2 2-0-0, Right 2x6 SP No.2 1-7-2	·	BRACING- TOP CHORD Structural wood sheathing directly applied or 3-9-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 18-19,17-18. 1 Row at midpt VEBS 1 Row at midpt 5-19, 6-19 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation quide
REACTIONS. (lb/size)	1=1196/0-3-8 (min. 0-1-8), 11=1258/0-3-8	(min. 0-1-8)	

Max Horz 1=1196/0-3-8 (min. 0-1-8), 11=1258/0-3-8 (min. 0-1-8) Max Horz 1=-242(LC 8) Max Uplift1=-66(LC 10), 11=-98(LC 10) Max Grav 1=1213(LC 2), 11=1258(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-837/0, 2-30=-1494/199, 3-30=-1348/225, 3-4=-1406/291, 4-31=-1400/296, 5-31=-1299/340, 5-32=-811/269, 32-33=-811/269, 6-33=-811/269, 6-7=-1306/374, 7-34=-1268/264, 8-34=-1359/246, 8-9=-1667/216, 9-10=-2624/249, 10-11=-619/87

BOT CHORD 1-35=-122/1089, 35-36=-35/1089, 21-36=-35/1089, 21-37=0/803, 37-38=0/803, 20-38=0/803, 19-20=0/803, 16-17=-31/1242, 15-16=-177/2290, 9-15=-1/791, 11-13=-57/885

WEBS 3-21=-309/225, 5-21=-115/588, 17-19=0/850, 6-17=-195/772, 8-17=-415/118, 8-16=0/300, 9-16=-1087/149, 13-15=-74/1352, 10-15=-112/1288, 10-13=-1105/68

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=4ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Exterior(2) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-7-14, Exterior(2) 12-7-14 to 21-6-1, Interior(1) 21-6-1 to 30-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Continued on page 2

PDF created with pdfFactory Pro trial version <u>www.pdffactory.com</u>

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	Т6	Piggyback Base	4	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F	Run: 7.620 s /	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:27 2016 Page 2
			10	D:ADPGGTe	2QQxSZmmNZYQrpgdyaQar-dBZlaxgQ6VjT1mpntuyPYLMZrqbOAKg9VLoINvzc2js

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 11.
8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
9) "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	Тпісе		Otv	Ply Sample Roof La	uout.	
DEA 50211 1	11035				yout	
Pook Truce Buildere Helly Sprin		Iggyback base	,,,,,,,,	Job Reference	e (optional) 7 520 a Apr 20 2015 Mitak Industriaa Ina Fri Mar 11 0	0:12:27 2016 Dogo 1
Feak Truss Duliders, Floiry Spin	- <u>1-0</u> 1-0	0 6-5-11 12-7-14 0 6-5-11 6-2-3	<u> </u>	ID:ADPGGTeQQxSZmmNZY 3-5-5 29-11-0 30 5-2-3 6-5-11	CrpgdyaQar-dBZlaxgQ6VjT1mpntuyPYLMZTqel <u>p-11-0</u> 1-0-0	oAQU9VLoINvzc2js
		4x8	= 4x5 =			Scale = 1:91.6
	2-6-1 1 1 1 2-6-1 2-6-1 1 2-7 2 3	$10.00 12$ $5x6 \neq 25$ 4 4 4 4 4 4 4 4 4 4	526 = 6 27 404	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		LUMBEF TOP CH 2x4 SP N BOT CH 2x4 SP N WEBS 2x4 SP N SLIDER Left 2x6
Plate Offsets (X,Y) [2:0	-5-6,Edge], [4:0-2-4,0-3-4], [5:0-6-4,0-2	0], [6:0-3-4,0-2-0], [7:0-2-4,0-3-4],	[9:0-5-6,Edge]	-2-3 6-5-11		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.42 BC 0.42 WB 0.19 (Matrix-M)	DEFL. ir Vert(LL) -0.06 Vert(TL) -0.17 Horz(TL) 0.06	1 (loc) l/defl L/d 3 14-15 >999 240 7 14-15 >999 180 5 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 205 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No SLIDER Left 2x6 S REACTIONS. (Ib/size) Max Horz	0.1 0.1 0.3 P No.2 2-0-0, Right 2x6 SP No.2 2-0-0 2=1257/0-3-8 (min. 0-1-8), 9=1257/0-3 2=-248(I C 8)	-8 (min. 0-1-8)	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing of 2-0-0 oc purlins (6-0-0 max. Rigid ceiling directly applied 1 Row at midpt 4- MiTek recommends that S truss erection, in accordar	directly applied or 4-4-7 oc purlins, except .): 5-6. d or 10-0-0 oc bracing. -14, 5-12, 7-12 Stabilizers and required cross bracing be inst nce with Stabilizer Installation guide.	alled during
Max Uplif Max Grav	2=-97(LC 10), 9=-97(LC 10) 2=1281(LC 2), 9=1277(LC 2)					
FORCES. (lb) - Max. Co TOP CHORD 2-3=-722 6-27=-82 BOT CHORD 2-30=-10 12-33=-2 WEBS 4-15=0/2	mp./Max. Ten All forces 250 (lb) or le //0, 3-24=-1542/175, 4-24=-1518/210, 4 /8/272, 6-28=-1075/281, 7-28=-1177/23 /1/1117, 15-30=-21/1117, 15-31=-22/11 /6/1107, 11-33=-36/1107, 11-34=-34/11 /67, 4-14=-404/170, 5-14=-54/452, 6-12	ss except when shown. -25=-1183/239, 5-25=-1080/281, 5- 9, 7-29=-1512/210, 8-29=-1536/179 12, 14-31=-22/1112, 14-32=0/833, 12, 9-34=-102/1112 -62/433, 7-12=-404/170, 7-11=0/2	-26=-828/272, 26-27=-82 5, 8-9=-719/0 13-32=0/833, 12-13=0/8 267	28/272, 333,		
NOTES- 1) Unbalanced roof live lo 2) Wind: ASCE 7-05; 100 , Interior(1) 2-0-0 to 12 members and forces 8 3) This truss has been de 4) Provide adequate drai 5) This truss has been de 6) * This truss has been de other members with B	ads have been considered for this designs, TCDL=6.0psf; BCDL=6.0psf; h=2 -7-14, Exterior(2) 12-7-14 to 21-6-1, Int MWFRS for reactions shown; Lumber esigned for basic load combinations, wh hage to prevent water ponding. signed for a 10.0 psf bottom chord live designed for a live load of 20.0psf on the CDL = 10.0psf	gn. 5ft; B=45ft; L=30ft; eave=4ft; Cat. I rior(1) 21-6-1 to 30-11-0 zone; can DOL=1.60 plate grip DOL=1.60 ich include cases with reductions fo load nonconcurrent with any other a bottom chord in all areas where a	I; Exp B; enclosed; MWF tillever left and right expo or multiple concurrent liv live loads. rectangle 3-6-0 tall by 2	-RS (all heights) and C-C Ext osed ; end vertical left and rig e loads. 2-0-0 wide will fit between the	erior(2) -1-0-0 to 2-0-0 ht exposed;C-C for bottom chord and any	

other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9. 8) This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. Configuration provide the section 2306.1 and referenced standard ANSI/TPI 1. PDF created with pdfFactory Pro trial version www.pdffactory.com

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	Т7	Piggyback Base	1	1	
					Job Reference (optional)
Peak Truss Builders, Holly Springs, NC				Run: 7.620 s	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:27 2016 Page 2
			IC	ADPGGTe	QQxSZmmNZYQrpgdyaQar-dBZlaxgQ6VjT1mpntuyPYLMZTqebAQU9VLoINvzc2js

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

JOD	Truss	Truss Type	Qty	Piy	Sample Roof Layout		
PEAS0311-1	Т8	Piggyback Base Supported Gable	1	1	lob Potoronoo (ontional)		
Peak Truss Builders, Holly Springs, N	IC			Run: 7.620 s A	Apr 30 2015 Print: 7.620 s Apr	30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:29 2016 Page 1	
	- <u>1-0-</u> 6	12-7-14	17-3-2	ID:ADPGGTeG 29-11-0	QQXSZmmNZYQrpgdyaQa <u>30-11</u> r0	ar-ZagW?dige6zAG3z9?J_tdmRyDdPJeKnSytHPRnzc2jq	
	1-0-0	12-7-14	4-7-4	12-7-14	1-0-0		
		3x4 =	4x5 =			Scale = 1:89.0	
	5x5 3x3	10.00 12 7 6 7 6 7 8 7 6 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8 7 7 8 7 8 7 7 8 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 7 8	9 10 11 12 5 17 5 17 5 18 3 17 5 17 5 18 3 19 3 2 3 1 ₃₀ 29 28 3 ×4 =	3 14 15 5 10 5 10 5 11 5 11 5 27 26	16 3x7 II 3x4 5T13 ¹⁷ ST14 12 18 W1 ¹⁹ 97 25 24 23 22	50 44 8.	
			5,44				
			29-11-0 29-11-0				
Plate Offsets (X,Y) [3:0-2-8	,0-3-0], [9:0-2-0,0-1-13], [12:0-3-4,0	<u>2-0], [20:0-4-8,0-1-8], [39:0-4-8,0-1-6]</u>	8]				
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2009/TPI2007	CSI. TC 0.21 BC 0.08 WB 0.14 (Matrix)	DEFL. in Vert(LL) -0.00 Vert(TL) -0.00 Horz(TL) -0.01	(loc) l/defl 21 n/r 21 n/r 22 n/a	L/d 120 120 n/a	PLATES GRIP MT20 244/190 Weight: 248 lb FT = 20%	
LUMBER- TOP CHORD 2x4 SP No.1 BRACING- TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 TOP CHORD 2x4 SP No.1 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3						plied or 6-0-0 oc purlins, except end verticals, and oc bracing. 1, 10-32, 8-33, 7-34, 13-28 and required cross bracing be installed during	
REACTIONS. All bearings 29-7-8. (lb) - Max Horz 38=-267(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 29, 31, 34, 35, 36, 37, 38, 28, 27, 26, 25, 24 except 22=-339(LC 9), 23=-189(LC 8) Max Grav All reactions 250 lb or less at joint(s) 29, 31, 32, 33, 34, 35, 36, 37, 38, 28, 27, 26, 25, 24 except 22=-339(LC 2)							
FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 7-8=-47/328, 8-9=-64/349, 9-10=-53/311, 10-11=-53/311, 11-12=-53/311, 12-13=-86/371, 13-14=-109/297, 19-20=-255/286							
 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-05; 100mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=30ft; eave=2ft; Cat. II; Exp B; enclosed; MWFRS (all heights) and C-C Corner(3) -1-0-0 to 2-0-0, Exterior(2) 2-0-0 to 12-7-14, Corner(3) 12-7-14 to 20-3-2, Exterior(2) 20-3-2 to 30-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. This truss has been designed for basic load combinations, which include cases with reductions for multiple concurrent live loads. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Continued on page 2 PDF created with pdfFactory Pro trial version www.pdffactory.com							

Job	Truss	Truss Type	Qty	Ply	Sample Roof Layout
PEAS0311-1	Т8	Piggyback Base Supported Gable	1	1	Job Reference (optional)
Peak Truss Builders, Holly Springs, NC			F ID:	Run: 7.620 s / ADPGGTeC	Apr 30 2015 Print: 7.620 s Apr 30 2015 MiTek Industries, Inc. Fri Mar 11 09:13:29 2016 Page 2 QQxSZmmNZYQrpgdyaQar-ZagW?dige6zAG3z9?J_tdmRyDdPJeKnSyfHPRnzc2jq

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 29, 31, 34, 35, 36, 37, 38, 28, 27, 26, 25, 24 except (jt=lb) 22=339, 23=189. Provide international connection (by others) of russ to begin g place capable of withstanding root is upint at joint(s) 29, 31, 34, 35, 36, 12) Non Standard bearing condition. Review required.
 This truss is designed in accordance with the 2009 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 "Semi-rigid pitchbreaks including heels" Member end fixity model was used in the analysis and design of this truss.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.